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ABSTRACT

A system comprising a large number of identical and
very inexpensive robotic search vehicles may serve as
an effective tool in a variety of MCM operations,
providing improved mine detection and clearance
capabilities while reducing cost and the physical risk to
MCM personnel.  Moreover, the many-robot approach
to addressing MCM applications becomes increasingly
viable as continuing technological developments
provide needed mine detection and other subsystem
capabilities at ever decreasing cost.  Real challenges
remain, however, at the system design level, and the
most effective and cost-effective systems will result
from careful attention to actual system requirements.

Following a discussion of detection sensor models, a
simple analytical framework is employed to demonstrate
that the design of a cost-effective many-robot search
system can depend sensitively on the interplay of sensor
cost and performance levels with mission-specific
functional and performance requirements.  The issue of
how to achieve effectively randomized search strategies
that provide uniform search coverage over a specified
area is then treated.  Finally, the importance of using
detailed detection statistics to estimate the independence
of successive sensor sweeps and to generate an adequate
model of sensor performance is discussed.

1. INTRODUCTION

The detection and clearance of mines both ashore and in
the surf zone constitute problems which have not yet
been satisfactorily addressed, from minefield
reconnaissance prior to an amphibious assault, through
breaching operations, to humanitarian demining after
hostilities have ceased.  The obvious dangers to
personnel, the problems associated with detecting non-
metallic mines, and the difficulties of navigation and
communication in the surf zone present difficult
challenges to the technologist who would build a Mine
Countermeasures (MCM) system.  However, recent (and
continuing) advances in a number of technology areas
offer hope that tools can now be developed to make
MCM operations safer and more effective.  For many
applications, a system comprising a large number of

identical and very inexpensive robotic search vehicles
may provide an appropriate solution.

In many respects, in fact, MCM operations is an
application area which appears to be perfectly matched
to  the many-robot systems concept:

¥ The MCM environment is dangerous to humans; a
robotic solution allows MCM operators to be
physically removed from the hazardous area.

¥ The MCM environment is also dangerous to
machines; the use of multiple inexpensive robotic
search elements minimizes the cost of lost system
assets, and allows the mission to be performed by the
remaining elements.

¥ One important MCM task is the destruction of mines;
using very cheap, deliberately expendible elements
allows a one-element-per-mine approach.

¥ Many mines must be dealt with; the use of many
robots allows these targets to be prosecuted in parallel,
rather than one at a time.

Prominent among the rapidly advancing technologies
which promise to make many-robot systems
increasingly feasible and cost effective is Micro
ElectroMechanical Systems (MEMS), which is a
technology for making objects which are not necessarily
small themselves, but posess small features.  MEMS
devices can be coupled to many physical phenomena to
produce a wide range of sensors which are small,
inexpensive, robust, and sensitive.  The continuing
rapid evolution of VLSI and the resulting geometric
improvement in computer price/performance provide the
processing tools needed to make quasi-intelligent
behaviors affordable.  The key is mass production driven
by the consumer marketplace that promises to make
sophisticated technologies available to the implementer
of robotic systems at orders of magnitude lower costs
than have been traditionally experienced.  Many-robot
MCM systems will exploit emerging technologies
being or soon to be developed for products such as
unmanned lawnmowers and vacuum cleaners, and toy
"pets" capable of rich interactions with their owners.



 This paper briefly explores several issues involved in
the design and implementation of man-robot MCM
search systems that can be both effective and cost-
effective: reducing the very broad design decision space,
implementing cost effective search algorithms that
provide uniform coverage of a search area, and validating
the actual effectiveness of a many-robot MCM system.

2. DETERMINING COST-OPTIMAL
SEARCH SYSTEM DESIGN

The designer of a many-robot system faces the
opportunities and challenges of working within a design
space providing many degrees of freedom.  Required
system level functionality and performance may be
achievable with many different system configurations,
and the designer must make appropriate choices
concerning the system as a whole (e.g., the number of
different castes of elements, the populations of each, the
desired ensemble behaviors, and the command and
control organization of the ensemble), and the
capabilities of each element type (e.g., effectiveness and
range of mission sensors and effectors, vehicle platform
limitations such as speed, endurance, weight, power
source, and communications capabilities and
programmed behaviors).  In some applications, a large
number of the simplest possible elements may be the
right answer; in other applications the best solution
may be a much smaller number of elements
incorporating higher capability sensors, effectors,
processing and/or communications resources.   The
elements may exhibit simple independent behaviors, or
complex coordinated ones.  And superficially similar
behaviors (both individual and ensemble) can often be
implemented in a number of very different ways.  In
this section we explore some system design dimensions
and the resulting system tradeoffs in the context of the
MCM area search application.

Minesweeping is the archetypal area search application:
a two dimensional area of interest is suspected to
contain some number of objects of interest (targets), and
the search task is to detect these targets.  For the
purposes of this analysis, the targets are assumed to be
stationary.  While the basic problem addressed -- in a
number of interesting variations -- by the field of
optimal search theory [1, 2] is to devise strategies to
optimally allocate a given set of search resources, our
purpose in the following simple analysis is to develop a
framework for choosing an optimal set of robotic
resources from within a very rich design space, given
specified operational goals and cost constraints.

We consider the following simple search problem: a
number of search elements, each carrying a detection
sensor of some sort,  move through a predefined search
area attempting to detect an unknown number of
stationary target objects.  The targets are a priori equally
likely to be at any point within the search area.
Whether any given searcher actually detects any given
target at any point in time depends on the relative
geometry of searcher and target at that instant, as well
as the physical characteristics of the detection sensor(s),
the environment, and the target itself.

2.1 Models of Detection

It is standard practice to approximate a detection sensor's
performance in order to facilitate analytical modeling of
the search process.  The simplest approximation is the
definite range law: targets which come within a certain
distance of the searcher are always detected, and targets
which do not come that close are never detected (hence
the searcher cuts a clean swath like a "cookie cutter").
A simplifying virtue of this model is that the sensor is
characterized by a single parameter: its maximum
detection range.  If this critical range value is chosen
appropriately, this model yields the correct number of
targets detected by a single searcher making a single
pass through an area.

A somewhat more sophisticated approximation to a
sensor's detection performance results if we are willing
to add a second parameter and specify some mean
probability of detection less than one over a specified
range.   As was the case with the "cookie cutter", this
imperfect sensor model can be parameterized to give the
correct number of targets detected by a single searcher
making a single pass through an area.  Moreover, in the
case of multiple coordinated sweeps through an area, the
imperfect sensor provides better results than the cookie
cutter, which gives an unreasonably optimistic
prediction.  Since many-robot systems are likely to use
low quality sensors, the imperfect sensor model is used
in our analysis below.

2.2 The Problem, More Precisely

Let us now be more specific in describing our search
system and application.  Our system consists of some
number N of identical robotic elements, each of which
can move about in the search area while carrying an
imperfect sensor (in the sense of section 2.1) of
nominal range r and detection probability p: any target
which lies within a distance r of an element's track is
detected with probability p as the element passes by.
Targets farther than r are never detected, false alarm



detections do not occur, and what action the element
might take with detected targets is of no concern.  Each
element is capable of traveling a total distance d during
the mission; this limitation may be due to limited
energy storage, or to operational constraints on the
duration of the mission, coupled with the maximum
speed which can be achieved while operating the sensor
payload.  Let S be the  average number of  times that
each point in the search area (whose area is A) is sensed;
we call S the "sweep fraction" of the search, and
calculate it as

S  =  2r d N / A (1)

2.3 Coordinated and Random Search
Processes

If we let D represent the probability that any given
target is detected, or, equivalently, the expected fraction
of targets detected, then our first step is to calculate D
as a function of S for two archetypal search strategies:
in the first case, the elements execute a perfectly
coordinated search pattern -- we may have only one
element following a "lawn-mower" pattern, perhaps by
employing a very accurate navigational system, or we
may have a number of elements moving in a tightly
coordinated formation; in the second case, we employ
(presumably less expensive) elements capable only of
staying within the designated search area, but otherwise
wandering completely randomly.

We define these two archetypal search strategies in
abstract and discretized form to provide the basis for
further probabilistic analysis:

We are given an urn containing a very large number of
otherwise identical marbles, a small percentage of which
bear an invisible mark.  We have a machine that can tell
us if a marble presented to it is one that bears a mark.
The machine is not perfect: it detects a marked marble
only with probability p, but it never indicates a false
positive.  The task is to separate out the marked
marbles by running the marbles through the testing
machine.  The two candidate strategies are:

Coordinated search: we pull marbles at random from the
urn and test them on the machine.  After testing, we
place the unmarked marbles into a second urn.  When
all the marbles have been tested, we pour these marbles
back into the first urn and repeat the process.

Random search: we pull marbles at random from the urn
and test them on the machine.  After testing, we return
each unmarked marble to the urn and mix it thoroughly.

What can we say about these two abstract strategies?
First, the coordinated search is clearly superior, since we
never test a marble for the nth time until all marbles
have been tested n - 1 times (and the more times a
marble has been tested, the less likely that it is an
undetected marked marble).  If p = 1, we will find all the
marked marbles by making just one pass (testing each
marble just once).  On the other hand, with a random
search we can never guarantee that we will find all the
marked marbles, no matter how many passes we make.
The second thing to note is that in order to perform the
coordinated search we have to have a second urn; in real
life as well, implementing a coordinated search will
generally entail additional costs.

In fact, a coordinated search is the best strategy you can
employ, and most real-world search tactics are designed
to achieve a coordinated search. Unfortunately, real-
world constraints (such as navigation inaccuracies) mean
that the results actually achieved usually more closely
reflect those predicted for a random search.  On the other
hand, a random search is not the worst strategy that can
be employed, and, as we will see below, it is not readily
apparent how to realize a deliberately random search that
will provide uniform coverage of a two dimensional or
three dimensional space.

In the marble world abstraction, S measures the average
number of times each marble has been tested: the total
number of tests we have made divided by the number of
marbles in the urn.  For the coordinated case, we
calculate

Dc  =  1 - (1 - p)Sc (2)

In fact, this equation is true only for integer S, with
straight line interpolation between integers, but we
won't worry about this approximation for now -- it
provides an upper bound on the performance of the
coordinated strategy, and the approximation gets very
good for large S.  On the other hand, we find for the
random case (in the limit of infinitely many marbles)

Dr  = 1 - e - p Sr (3)

Unlike equation (2), equation (3) is accurate for non-
integer S.  Figure 1 shows the behaviors of equations
(2) and (3) when p = 0.8.



2.4   Measures  of  Search Strategy
Effectiveness

We now consider the question of how much "better" is
the completely coordinated search (first case) than the
completely random search (second case).

Different search applications require different measures
of systems effectiveness.  The task may involve  many
targets, as in the case with minesweeping, or it may
involve only a single target (a sunken submarine, for
example).   And, in the case of many targets, the desire
to minimize the number of targets missed in a swept
area (as in minesweeping) is not the same thing as the
desire to maximize target detections per amount of
search effort (as in prospecting for manganese nodules).

For the minesweeping application our goal is to
minimize the cost of detecting a specified  fraction  D of
the targets, which allows us to make the notion of
"better" a precise one by recasting the question as:  for a
given sensor effectiveness p, how much larger a sweep
fraction Sr is required so that the detect fraction D of a

completely random search (second case) is equal to that
of a completely coordinated search (first case) with
sweep fraction Sc?    By equating Dc in equation (2)
with Dr in equation (3), we calculate the "search gain"

G, or factor reduction in required search effort afforded
by a coordinated search as compared to a random search:

Gc, many target = Sr / Sc =  -ln (1 - p) / p (4)

This result says that, for any sensor detection
probability p < 1, we can achieve any desired detect
fraction D equally well by (a)  performing a completely
coordinated search with sweep fraction Sc we calculate

from equation (1), or by (b) performing a random search
with sweep fraction Sr calculated from equation (2),
which is larger than Sc by a factor (equation (4)) which

depends only on p, and is independent of the desired
detect fraction D and the S required to achieve it.  Figure
2a shows how this ratio varies with p; it is fairly small
for poor sensors, and, as is obvious from inspection of
equation (4), the numerator of the expression dominates
the behavior as p approaches 1.

The fact that Sr/Sc is independent of the desired D

suggests that we might be able to make use of the
corresponding ratio to quantitatively describe the relative
effectiveness of other search strategies.  Accordingly, we
define the "search gain" G of any given search strategy s
as:

Gs = Sr / Ss

In other words, the search gain Gs of a search strategy s

is the factor by which that strategy reduces the search
fraction required to achieve any desired detect fraction,
compared to a random search.  So we can then write the
detect fraction Ds for any search strategy s as:

Ds = 1 - e -p Gs Ss = 1 - e -p Gs N 2r d / A  (5)

G will be most meaningful if it depends only on p, as
in the case of the fully coordinated search of case 1, but
it will still be useful if it varies slowly and predictably
with S.  Note that while the G calculated for the
completely coordinated search -- equation (4) -- serves as
the maximum value achievable by any search strategy,
it is entirely possible for a strategy's G to be less than
1.0 if element paths are positively correlated, as in the
case of ants following each others' pheromone trails.

2.5  The System Design Space

The reason for choosing to write equation (5) in this
format is that the variables in the expression essentially
provide a coordinate system for the system design space,
and they break naturally into three groups:

¥ p and r are characteristics of the primary mission
sensor: its single-pass probability of target detection and
its range.  Note that in some cases the choice of a
sensor will have immediate implications for other
system characteristics; for example, p and/or r may
depend critically on element speed, as with sonar self
noise.

¥ N and d, which together with r determine the sweep
factor S, are parameters pertaining to the element
platforms: the number of elements to be employed, and
the effective search range of each.  Mission time and
stealth requirements, maximum platform speed, and
energy storage limitations may be important in
determining d.

¥ G is the gain in search effectiveness due to the
coordination (negative correlation) of element search
paths to provide balanced coverage; this is where vehicle
search strategy behaviors are accounted for.

Figure 3 presents a (fictitious, or "toy") simple
application example in which the design space consists
of 12 possible systems, allowing any of three possible
sensors, a completely random or a completely
coordinated search strategy, and an optional battery



upgrade to double vehicle range, with each choice
having an associated specified cost.  As the quality of
the sensor (its raw target detection probability p)
improves, the most cost effective design shifts from
employing a large number of the least expensive and
least capable elements to a much smaller number of
more expensive and more capable elements.  In the real
world, with a much more complex design space and
unavailable, unreliable, and expensive cost estimates,
the design process would probably begin with the
determination of p for the mission sensor package, since

determining p determines the maximum G that can be
achieved.  The lower the value of p, the more likely it
is that it will be more cost effective to utilize a random
search strategy (G = 1) and increase S, rather than
implement a coordinated search strategy, with its added
cost and complexity.  Once the search strategy is
selected, determining G, then the tradeoff between
sensor range, number of elements, and search range per
element can be made to realize the required S in the
most cost effective fashion.

                 sensor                      G*S coord coord?  double cost / n u m
cost of

cos t r a n g e detect  p r e q d gain G r a n g e ? e l e m
e l e m s s y s t e m

1 1 0.5 9.21 1.39 11 460.52 5066 <--
-
1 1 0.5 9.21 1.39 y e s 26 230.26 5987
1 1 0.5 9.21 1.39 y e s 41 332.19 13620
1 1 0.5 9.21 1.39 y e s y e s 56 166.10 9301

10 1 0.7 6.58 1.72 20 328.94 6579
10 1 0.7 6.58 1.72 y e s 35 164.47 5756 <--
-
10 1 0.7 6.58 1.72 y e s 50 191.25 9562
10 1 0.7 6.58 1.72 y e s y e s 65 95.62 6216

15 1 0.9 5.12 2.56 25 255.84 6396
15 1 0.9 5.12 2.56 y e s 40 127.92 5117
15 1 0.9 5.12 2.56 y e s 55 100.00 5500
15 1 0.9 5.12 2.56 y e s y e s 70 50.00 3500 <--
-

Figure 3.  Design spreadsheet for a fictitiously simple application design space consisting of only 12 possible
systems.  The mission is to search an area A = 10000 and achieve a detect fraction D = 0.99.  A base vehicle costs
10, and has a range of 100.  The additional cost of better batteries which double the range to 200 is 15.  The cost of
sensors and processing to implement a completely coordinated search strategy is 30.  Three possible mission sensors
are available.  Equation (4) has been used to calculate the number of elements required, the cost per element, and the
total system cost for each of the twelve possible combinations of mission sensor, random or coordinated behavior,
and baseline or improved batteries.  It is seen that (a) the most cost effective system using the least expensive sensor
uses the simplest possible elements, (b) the intermediate sensor justifies the incorporation of the battery upgrade, but
not the coordinated search behavior, and (c) using the most expensive sensor justifies both the battery upgrade and
the coordinated search behavior.

3. ACHIEVING UNIFORM COVERAGE
WITH "RANDOM" SEARCH STRATEGIES

In the previous section we considered random search
from the perspective of the performance predicted by a
particular analytical model; in this section we consider
the problem of how to actually generate a "random"
search path which (a) provides uniform coverage over a

designated search area and (b) can be implemented with a
minimum investment in navigational sensors,
processors, external navigational aids, communications
resources to support coordination between search
elements, etc.

"Randomized" search trajectories are also of special



interest in searching for a potentially mobile target or
targets [4,5].  By "randomized" we mean a path which is
not predictable, so that a mobile target which somehow
gains partial or even complete knowledge of a searcher's
prior path and current position can not predict its future
path and thereby evade detection.  The strategy must
clearly not attempt to be more efficient than the random
search model, since in this case the target could evade
capture by favoring locations that the searcher had
already visited.  In general, the searcher's path must not
follow any predictably discernible pattern that can
permit the target to evade capture.  More critically, the
search path must not be determined by fixed reaction to
environmental features, since this may permit the target
to spoof the searcher into changing his path (see [6] for
a discussion of security issues relevant  to robotic
systems).  In addition, navigational inaccuracies due to
sensor bias may lead to systematic gaps in coverage
even if the target is not sophisticated.

A search strategy of following straight line paths
between points chosen at random within the search area
was proposed by Henze [7], but simulations by McNish
[8] showed that this does not lead to a uniform
distribution of search effort, instead providing excessive
coverage of the central area at the expense of the
periphery.  In order to increase the coverage near the
boundaries, McNish considered a number of other
algorithms that generate paths consisting of sequences
of chords within a circular search area.

The use of a search path consisting of chords is
appealing for several reasons.  First, the searcher travels
as far as possible between changes of direction and is
guaranteed not to visit any point twice during the transit
of a chord.  Second, a chord-based strategy is completely
specified by the algorithm that determines the direction
of the next chord each time the searcher arrives at the
boundary of the search area.  The specific reflection
algorithms simulated by McNish over a circular disk
search area were specular reflection (angle of reflection
equal to angle of incidence, like light from a mirror),
uniform reflection (angle of reflection distributed
uniformly), and diffuse reflection (like light reflecting
from a matte surface).  McNish found that only diffuse
reflection reliably provided uniform search coverage.

The diffuse reflection algorithm specifies a random
distribution of reflection angle q  with probability
defined as:

Prob (q) = 1/2 sin(q) dq (6)

where q measures the angle of the chord from the

tangent to the boundary at the reflection point.  Again
for the case where the search area is a circular disk,
Lalley and Robbins [9] mathematically proved that, in
the limit as the length of the search path goes to
infinity (corresponding to the sensor range going to 0),
the search coverage is uniformly distributed: "the long-
run search effort devoted to any region of D is
proportional to its area, and consequently, the
'infinitesimal search effort' is the same at every point of
D.  It is intuitively plausible that a good search plan
should have this property, for if not, a target could gain
an advantage by hiding at a point scheduled for a low
level of search effort" [9].  For non-circular but still
convex search areas, the "optimal" generalization of the
diffusion algorithm has been shown to be:

Prob (q)  =  constant K(q) (7)

where K(q) is the length of the chord from the reflection
point in the direction q [3].

It is clear, however, that there are an infinite number of
search strategies (including diffuse reflection) that
provide uniform coverage of, say, a rectangular  area
"in the limit as the length of the search path goes to
infinity", but some do a lot better than others in the
short term.  Metrics must be developed to assess the
uniformity (and hence effectiveness) of coverage
produced by competing search algorithms, over finite
search path lengths.  The tradeoff between strategies
must then be performed at the system level, taking into
account the cost of implementing each strategy.  For
example, while the diffuse reflection algorithm requires
only that each search element be capable of traveling in
a straight line and detecting the presence and orientation
of the boundary of the search region, the chord length
algorithm requires in addition the ability to calculate the
length  of the chord across the search area in each
direction from every possible point of reflection --
essentially to accurately "know" its own position and
the complete geometry of the search area.

Use of a diffusion strategy has been analyzed by Eagle
at the Naval Postgraduate School [10] and, more
recently, a "quasi-diffusion" "move forward a randomized
distance, turn a randomized angle, and repeat" algorithm
has been simulated in the context of the "Lemmings"
many-robot system for neutralizing shallow water
mines [11,12].  These types of algorithms do not claim
to provide uniform coverage, but they provide
predictable coverage relative to their deployment point,
and they can be implemented with only a compass and
an odometer.  Analysis that could guide the selection of
"optimal" parameters for the distance and turn



randomizations remains to be done; exploration of the
approach has so far relied completely on simulation.

4. SWEEP (IN)DEPENDENCE, MODELING,
AND PERFORMANCE VALIDATION

Both probabilistic analysis and Monte Carlo simulation
of the search process require that some assumption be
made regarding the statistical independence of the
probability of detection of a given target with
successive sweeps of the same or a different sensor.
The easiest assumption, and the one underlying the
entire analysis presented above, is that successive
sweeps are indeed statistically independent.  It is clear,
however, that this is not in fact true: some mines will
undoubtedly be buried deeper than others, and, in a
mixed field, some mine types will be intrinsically easier
to detect than others due to higher metal content.

This lack of independence can be accounted for by
modeling the population of mines as a distribution of
populations of varying probability of detection, and
using actual field measurements to characterize the
distribution.  The procedure would be to make multiple
sweeps of the search area and count the number times
each mine is detected (or, if the search process affects
the search environment, count the number of additional
targets detected on each pass).  The sweeps could be
made using the same or different sensors, including an
intensive manual sweep of the area which would,
presumably, find 100% of the targets.  The population
of detected false alarm non-targets can be modeled in
exactly the same way.

Even without knowing "ground truth", Bayesian
techniques can be used to characterize the performance of
each sensor against the various target classes in the
field, and to estimate the remaining threat.  A "back of
the envelope" rough calculation goes something like
this: if there are M mines actually out there, then the
first sensor pass finds p M mines, leaving (1-p) M.
The second pass finds p (1-p) M, or (1-p) times the
number found on the first pass.  The number of mines
still undetected is M (1 - (1-p)2).  Hence if we find 60
mines on the first pass, and 6 on the second pass, we
estimate p = .9, and figure that about .66 mines remain.
If, onthe other hand, we find 12 mines on the second
pass, we estimate p = .8, and expect that about 3 mines
remain undiscovered.  Again, Bayesian techiques provide
a much more rigorous method for doing this kind of
analysis.

Using actual field measurements to arrive at a more

accurate (and necessarily more complex) representation
of the performance of a sensor against a target field can
provide value in several contexts.  During sensor
development, it can characterize the variability of a
sensor's performance, and help identify factors that affect
it.  During MCM system development, it can provide
an understanding of how and whether to combine the
outputs of different candidate detection sensor
subsystems.  At the beginning of a clearance operation,
measurements on a small representative subarea can be
used to develop expectations of the effectiveness of the
search of the whole area.  Finally, data gathered during
the sweep operation and from additional samplings can
be used to provide a more accurate estimate of the threat
remaining after the operation is complete.

5. CONCLUSION

Technological developments promise to make the
many-robot approach increasingly viable for addressing
MCM applications, by providing at ever decreasing cost
the vehicle, sensor, and processing subsystem
capabilities needed both for mine detection and for
navigation in the operational environment.  Real
challenges will remain, however, at the system design
level.  The most effective and cost-effective systems
will result from careful attention to actual system
requirements, and need not necessarily employ the latest
and  most capable  subsystems.

MCM search systems consisting of many inexpensive
robots may well tend to use randomized rather then
coordinated search strategies for two reasons: (1) the
increase in effectiveness provided by a coordinated (as
opposed to random) search strategy decreases as the
capability of  the search sensor (probability of target
detection) decreases; and (2) the cost of implementing
the navigation capabilities necessary to support a
coordinated search strategy may be prohibitive, relative
to the cost of a less capable search element.  However,
careful analysis is required to select and implement an
appropriate strategy that efficiently provides the required
area coverage.  Developers of robotic MCM search
systems must do more than simulate one or two
candidate search strategies; fifty years of developments
in the field of search theory can provide them with
analytical tools to help understand tradeoffs relative to
overall system search performance.  Meanwhile, the
advent of search systems consisting of inexpensive
robots carrying minimum capability sensors provides
search theorists with the opportunities of a previously
unexplored problem domain.
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Figure 1.  Detect Fraction (D) as a function of Sweep Fraction (S) for sensor probability of detection (p) equal to
0.8.  (a) Completely coordinated search strategy, equation (2).  (b) Completely random search strategy, equation (3).
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B. SINGLE TARGET SEARCH

A. MULTIPLE TARGET SEARCH

Figure 2.  Search strategy gain (Gc = Sr/Sc) of a completely coordinated search strategy over a completely random

strategy, as a function of the sensor target detection probability (p), for (a) finding a specified fraction of multiple
targets, equation (4), and (b) finding a single target, see reference [3].




